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We investigate the effects of spin-orbit interaction �SOI� on the exchange cotunneling through a spinful
Coulomb blockaded quantum dot. In the case of zero magnetic field, Kondo effect is shown to take place via
a Kramers doublet and the SOI will merely affect the Kondo temperature. In contrast, we find that the breaking
of time-reversal symmetry in a finite field has a marked influence on the effective Anderson and Kondo models
for a single level. The nonlinear conductance can now be asymmetric in bias voltage and may depend strongly
on the direction of the magnetic field. A measurement of the angle dependence of finite-field cotunneling
spectroscopy thus provides valuable information about orbital and spin degrees of freedom and their mutual
coupling.
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Quantum dots based on materials with pronounced spin-
orbit interaction �SOI�, such as InAs, SiGe, carbon nano-
tubes, and single molecules have recently received reinforced
attention.1–9 This is partially motivated by the quest for
achieving electrical control of single spins, utilizing the fact
that an electrical coupling to the orbital degrees of freedom
may allow for manipulations of the spin via the SOI.10–15 In
quantum dots, the precise form of the spin-orbit coupling
depends strongly on the band structure, confining potential,
and dot geometry altogether. It would therefore be of great
value if one could infer about the SOI directly from a mea-
sured cotunneling bias spectroscopy, which is known to pro-
duce sharp spectroscopic features due to threshold processes
and/or Kondo effects.

It is well known that Kondo effect in metals with mag-
netic impurities such as Ce and Yb, say, are strongly affected
by spin-orbit interaction.16–18 The SOI modifies the spectrum
of the impurity atom but since it preserves time-reversal in-
variance a Kramers-degenerate ground state remains and
gives rise to Kondo effect. Likewise, a quantum dot holding
a net spin 1/2, will also have its spectrum modified by SOI,
and a Kramers degeneracy will still be available for Kondo
effect. Unlike the atomic L ·S coupling, however, the SOI in
a quantum dot breaks rotational invariance and relates to
specific spatial directions, akin to the effect of a crystal
fields16–18 or nearby surfaces19,20 in the atomic problem.
Since a spinful quantum dot allows for local directional
probes such as bias voltage and magnetic field, the question
arises if there are effects of SOI that show up directly in a
transport measurement?

Here we show that in the case where a single level ap-
proximation is valid, the SOI can be absorbed in a redefini-
tion of the lead electron fields and thus leaves the Kondo
effect unaffected. In the presence of a finite magnetic field,
however, spin and orbital contents of the Kramers doublets
become disentangled and a spatial asymmetry in the tunnel-
ing amplitudes can cause the Zeeman-split Kondo peak to
become asymmetric in bias voltage. This type of asymmetric
splitting does not occur without SOI, unless the voltage be-
comes large enough to allow for real charge fluctuations on
the dot. Furthermore, the SOI-induced asymmetry will de-
pend strongly on the direction of the magnetic field. The
distinct angular dependence provides a very direct signature
of the SOI in a quantum dot, thus providing valuable infor-
mation about the quantum dot in question.

We employ the following general single-particle Hamil-
tonian to describe a quantum dot defined by a potential V�r�
and placed in an external magnetic field:

Hd =
�p − eA�2

2m
+ V�r� + g�BB · �

+
e�

4m2c2 �E�r� � �p − eA�� · � �1�

with � denoting the vector of Pauli matrices and B the ex-
ternal magnetic field corresponding to a vector potential A.
The spin-orbit coupling is here kept on its most generic form
in terms of the relevant nuclear or structural electrical field
E�r�. The potential contains both the periodic potential from
the ionic background and the imposed confining potentials
defining the dot.

In the absence of an external field �A=0�, this Hamil-
tonian is symmetric under time reversal and its eigenstates
therefore take the form of Kramers doublets of two spinors,21

�n⇑�r� = �un�r�
vn�r� �, �n⇓�r� = �− vn

��r�
un

��r�
� , �2�

where the wave-function components un and vn depend
strongly on the confining potential. The corresponding
eigenenergies, �n, come with a characteristic level spacing
set by the confining potential and the strength of the SOI.
Also the source and drain electrodes may experience a SOI,
so in general, we can express the eigenstates of the corre-
sponding Hamiltonian in the leads, HL/R, in the same way,

��k↑�r� = �a�k�r�
b�k�r� �, ��k↓�r� = �− b�k

� �r�
a�k

� �r�
� , �3�

where �=L ,R refers to left and right leads, respectively. Us-
ing these eigenstates, the total many-body Hamiltonian is
given by

H = �
�=L/R

k,�

��k − ���c�k�
† c�k� + �

n,�
�ndn�

† dn�

+ �
�=L/R
k,�,�,n

�t�kn
�� c�k�

† dn� + tn�k
�� dn�

† c�k�� + Hint, �4�
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where c�k�
† creates an electron in the �th component of the

Kramers doublet ��= ↑ /↓� with momentum k in lead
�=L /R, and dn�

† creates an electron in the �th component
��= ⇑ /⇓� of the nth Kramers doublet on the dot. For the
interaction term we employ the constant interaction model
Hint=EC�N−Ng�2, where EC denotes the total capacitive
charging energy of the dot.

The amplitudes for tunneling between dot and leads t��
�kn

depend on the index of the Kramers doublets and it is given
by the Hamiltonian overlap,

t��
�kn =� dr��k�

� �r�Htot�r��n��r� , �5�

where the total single-particle Hamiltonian still takes the
form of Eq. �1� but with an extended potential defining two
tunneling barriers which support the distinction into leads
and dot �Htot=Hd+HL+HR� made in our definition of the
eigenfunctions for the separate parts. Regardless of the de-
tails of this potential, this first-quantized Hamiltonian takes
the following form:

Htot�r� = H0�r�	0 + i
so�ijk	
iEj�r��xk

�6�

with kinetic energy and local potential contained in H0�r�
and the local spin-orbit term written in terms of the Levi-
Cevita symbol �ijk �Einstein summation convention implied�.
Using the fact that the different Kramers doublet components
can be related via time reversal,21 i.e.,

�n⇑,� = i	���
y �n⇓,��

� , �7�

together with the relation 	y	i	y =−�	i��, it is readily demon-
strated that

	�k↓
Htot
n⇓� = 	�k↑
Htot
n⇑��, �8�

	�k↓
Htot
n⇑� = − 	�k↑
Htot
n⇓��, �9�

which renders the tunneling amplitude proportional to a uni-
tary matrix in �� space,

t��
�kn = t�knU��

�kn. �10�

Note that such off-diagonal tunneling matrix elements
among Kramers doublets was recently shown to lift the cel-
ebrated spin-blockade in a lateral double dots.22

Next, we consider a specific charge state with an odd
number of electrons on the dot and assume all levels below
the mth level to be doubly occupied. For the singly occupied
mth level the dimensionless unitary matrix in Eq. �10� can be
now be absorbed in a redefinition of the fermion fields in the
two leads: c̃�k�

† =c�k�
† U��

�km. For sufficiently large level spac-
ing, we thus end up with the following single-orbital Ander-
son model:

H = �
�k�

��k − ���c̃�k�
† c̃�k� + �

�

�mdm�
† dm�

+ �
�k�

t�km�c̃�k�
† dm� + dm�

† c̃�k�� + Hint, �11�

which no longer bears any trace of the SOI. Notice that this
unitary transformation is specific to the mth level and there-
fore tunneling amplitudes to any of the other levels on the

dot will in general retain their full �unitary� 2�2 matrix
structure in �� space. Apart from its influence on the precise
magnitude of t�km, SOI thus appears to have no effect what-
soever on transport phenomena involving only a single level.
In particular, the Kramers degeneracy of this level will give
rise to Kondo effect.

This conclusion changes dramatically in the case of a fi-
nite applied magnetic field, which couples directly to the
constituent quantum numbers of the Kramers doublets, i.e.,
to spin and orbital degrees of freedom. Using symmetric
gauge, A�r�= �B�r� /2, the magnetic field enters Hd through
the kinematic momentum. This gives rise to the following
first-quantized terms:

HB = − �BB · L + �B
e

4
�r2B2 − �r · B�2�

+ �B�gB + ��E�r� · B�r − �E�r� · r�B
e

4mc2� · � �12�

with an orbital term depending on the angular-momentum
operator L, a diamagnetic term quadratic in B, and a local
anisotropic Zeeman term. The terms linear in B both break
the time-reversal symmetry and thus destroy the degeneracy
of the Kramers doublets. We shall assume B to be weak
enough that this splitting, which we parametrize by an effec-
tive g factor, g̃, is much smaller than the relevant zero-field
level spacing, i.e., g̃�BB���min��m+1−�m ,�m−�m−1�.

Apart from this renormalization of the Zeeman splitting
within the mth level, the linear terms in B also have off-
diagonal terms which couple the state 
m�� to other states

n��� via L and �. The amplitudes for tunneling into the
resulting finite B eigenstates of the dot are therefore changed

and in particular the unitarity of t�km
��� used for B=0 is no

longer guaranteed. In general, the matrix of tunneling ampli-
tudes can be polar decomposed into a product of a unitary
and a Hermitian matrix. The unitary part can again be ab-
sorbed in a canonical transformation of the conduction elec-

trons in the corresponding lead and t�km
��� can be taken to be

Hermitian in ��� space. Altogether, the tunneling term in Eq.
�11� is therefore modified to

HT = �
�k���

�t�km
��� c̃�k��

† d̃m� + �t�km
��� ��d̃m�

† c̃�k��� , �13�

where electron creation operators, d̃m�
† and c̃�k��

† , as well as

tunneling amplitudes t�km
��� now depend on the applied mag-

netic field.
Kondo model. Within the Kondo regime,

max��F,�
�t��m
�����t�m

����
��min�−�m ,�m+EC�, a Schrieffer-
Wolff transformation23 with the full ��� matrix tunneling
amplitudes now leads to the following exchange-cotunneling
�Kondo� model:

HK = �
�k�

��k − ���c̃�k�
† c̃�k� + �Bg̃ijBiSj

+
1

2 �
���,k�k,���

i,j=0,x,y,z

J���
ij Sic̃��k���

† 	���
j c̃�k� �14�

with S0=1, 	���
0 =����, and cotunneling amplitudes,
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J���
ij = Tr�t��m	it�m

† 	 j�
�+ + �− 1��i0�−

2��i0+�j0��+�−
, �15�

where �� denotes the addition and subtraction energies on
the dot. Away from the particle-hole symmetric point,
�+=�−, a vector of potential scattering amplitudes, J0j, is
present. Notice also that expanding Eq. �15� to leading order

in B, it follows from the Hermiticity of t�km
��� that the in-

tralead exchange couplings will be diagonal and isotropic,
i.e., J���

ij ��ij.
It is interesting to note that this exchange scattering has

lead indices �L /R� mixed up with Kramers doublet indices
��� in such a way that the usual simplification to a single-
channel Kondo model no longer is possible. For B=0 �or
without SOI� only one channel is involved but a finite field
breaks the L /R symmetry via the SOI and gives rise to a
channel asymmetric two-channel �anisotropic� Kondo model.
As we shall demonstrate below, certain system geometries
will have zero Zeeman splitting in finite magnetic field and
therefore a strong-coupling two-channel regime24,25 should
in fact be attainable for such geometries.

Cotunneling current. From these cotunneling amplitudes
one can now calculate the current through the dot as �Ref.
26� I=e���������

RL −����
LR �P���. Notice that off-diagonal

terms in the impurity spin-density matrix can safely be ne-
glected since we assume all degeneracies to be lifted by or-
bital, Zeeman and spin-orbit splittings much larger than the
cotunneling rates.27 The nonequilibrium occupation numbers
P��� for the dot states satisfy a rate equation from which
they are found to be P���=���̄ / ����̄+��̄��, with

����=��������
���. These cotunneling rates are found as

����
���=����

�������
���nB�����

����, where nB is the Bose
function and the energy differences are defined as

����
���= �̃m,��− �̃m,�−��+���. Finally, the tunneling prob-

abilities are ����
���=��F,���F,��ijkJ���

ij J���
ik 	���

j 	���
k , where �F,�

denotes the density of states in lead �. Notice that this is a
real number since �J���

ij ��=J���
ij . As for a system without

SOI, the nonlinear conductance will exhibit cusped steps at
bias voltage, V=�L−�R, corresponding to the effective Zee-
man splitting. Since, however, Kramers doublet and lead in-
dices are mixed for finite magnetic field, the nonlinear con-

ductance is no longer symmetric in bias voltage. In general,
the two cusps at, respectively, positive and negative biases
can now be of different magnitude, and their relative magni-
tude will in general depend on the angle of the magnetic
field.

Two-level model. To better illustrate these results, we now
exemplify our discussion by a simple two-level model �cf.
Fig. 1�. With two levels split by an energy �, we can express
the Hamiltonian in the basis �
1↑� , 
1↓� , 
2↑� , 
2↓�, where the
wave functions of the two levels, �1 and �2, are chosen to be
real. In this basis, the spin-orbit coupling is included to give
the full dot Hamiltonian,

	i�
H0
j��� = − 	ij
z 	���

0 �/2 + 	ij
y 	���

z
SO/2, �16�

where we have chosen the spin quantization along the
built-in spin-orbit field, �BBSO= e�

2mc2 	�1
E�r��p
�2�
�−ẑiSO /2, characteristic for these two levels. H0 is diago-
nalized by two Kramers doublets,


a�� = u
1�� − iv	��
z 
2�� , �17a�


b�� = v
1�� + iu	��
z 
2�� , �17b�

with u2+v2=1, 2uv=SO /, =��2+SO
2 , and eigenener-

gies Ea/b= � /2. Note that these doublets follow the general
structure of time-reversed pairs in Eq. �2�. In the presence of
a magnetic field, we shall neglect the quadratic term in Eq.
�12� altogether. This amounts to assuming the dot to be much

ε1

ε2

λ
BSO

Left lead Right lead

Dot

BSO

θ
λ

B η

ϕ

FIG. 1. �Color online� Sketch of two-orbital model system char-
acterized by spin-orbit field BSO and the angular-momentum vector
�.
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FIG. 2. �Color online� �a� Geometry of vectors �, BSO, and B,
indicating their relative angles. BSO and B span the x-z plane. ��b�–
�f�� Nonlinear conductance, dI /dV, in arbitrary units vs bias voltage
in units of  for a set of representative parameters given in the
insets. Each panel shows a progression of curves with varying �,
moving from the thick solid �black� curve with �=0 to the thick
dashed �black� curve with �=� /2. Notice the closing of the Zeeman
splitting for B�BSO for two solely SOI-split orbitals in panel �c�.
This can also be seen analytically from Eq. �20�. Remaining param-
eters are g�BB=0.5, temperature T=0.01, �=� /4, and t1,L/R= t,
t2,L=3t, t2,R=0.1t, with t being the overall scale of the tunneling
amplitudes which only influences the scale of the conductance,
which must be much smaller than e2 /h to ensure validity of our
perturbative calculation of current.
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smaller than the magnetic length, i.e., eB�dot
2 ��, which will

then ensure that eB2	r2�−e	�r ·B�2�� 	�r�p� ·B�. The re-
maining linear terms in Eq. �12� have the following matrix
elements in the original four-state basis:

	i�
HB
j��� =
g0�B

2
	ij

0 B · ���� + i�B	ij
y 	���

0
� · B , �18�

where �=−i	1
L
2� is a �real� vector characteristic for the
two levels. Expressing this in the zero-field eigenbasis �a ,b
doublets�, we can now find the low-field splitting of the in-
dividual doublets. That is, for fields low enough that this
splitting will be much smaller than , we obtain the effective
single-doublet �m=a ,b� Hamiltonians,

	m�
HB
m��� =
g0�B

2
BZm�sin �m,0,cos �m� · ����, �19�

where we have defined

Za/b =��2 sin2 �

�2 + SO
2 + �cos � �

2
̃SO

g0
�2

�20�

with sin �a/b= ���sin �� / �Za/b� and where 
̃
= 
�
�cos � cos �+sin � cos � sin �� denotes the projection of
� on B in terms of the relative angles �� ,� ,�� between the
two intrinsic vectors, BSO and �, and the external B, all
indicated in Fig. 2�a�. The eigenstates of this Hamiltonian are
readily found by a rotation within the plane spanned by BSO
and B, i.e., 
m�̃��0�=Ry��m�
m��, where Ry���=	0 cos�� /2�
+ i	2 sin�� /2�. Apart from this splitting, a finite field
will also mix the a and b doublets. Starting from this

last eigenbasis, which only refers to the direction of
B, we include this mixing to linear order in the
magnitude 
B
 from first-order perturbation theory, i.e.,

a�̃��1�= 
a�̃��0�+ 	b��
HB
a����Ry��a�����
b����0�, where

	b��
HB
a��= �
̃�	���
z −g0 sin���SO	���

x /2��BB /. The am-
plitudes for tunneling into this lowest lying Zeeman-split
Kramers doublet 
a�̃��1� are now readily found using Eq.
�16�. Notice that it is only this last nonunitary mixing of a

and b doublets which prevents us from diagonalizing t�a
��� by

a canonical transformation of the conduction electrons.
Whereas the SOI could not be discerned at zero field, the

angle-dependent bias voltage asymmetry of dI /dV, con-
firmed by our simple model in Figs. 2�b�–2�f�, is a unique
signature of SOI at finite field. Such bias asymmetries have
often been found in experiments on various quantum dots.2,28

Nevertheless, it is often difficult to rule out the influence of
incipient charge fluctuations, setting in at slightly higher bias
voltages, as the source of this asymmetry. The only unam-
biguous evidence for such SOI-induced bias asymmetry will
therefore be the observation of its variation with a change in
the direction of the magnetic field. Taken together with the
possible angle dependence of the Zeeman splitting itself �cf.,
e.g., Refs. 4 and 5�, such a measurement can thus reveal
otherwise inaccessible details on the spin-orbit coupling in a
given quantum dot.
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